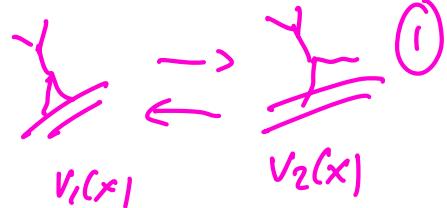


Last time :

- * 2-state model for the stepping of molecular motor



- * Coarse graining into Markov chain
state $\varphi \leftrightarrow$ position of the motor

- * Transition rates $W(\varphi \rightarrow \varphi')$

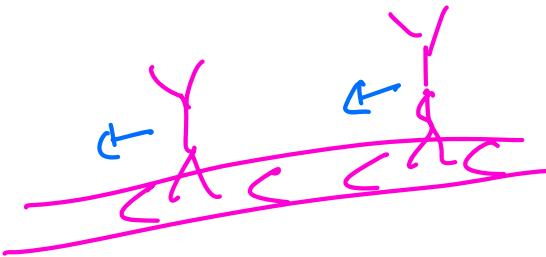
- * Master equation

$$\frac{\partial}{\partial t} P(\varphi) = \sum_{\varphi' \neq \varphi} \underbrace{W(\varphi' \rightarrow \varphi) P(\varphi', t)}_{\text{gain term due to incoming transition}} - \sum_{\varphi' \neq \varphi} \underbrace{W(\varphi \rightarrow \varphi') P(\varphi, t)}_{\text{loss due to outgoing transitions.}}$$

Today:

- * Collective motion of motors

focus on difference between
1 & 2 motors



- * Detailed balance & TRS for Markov models

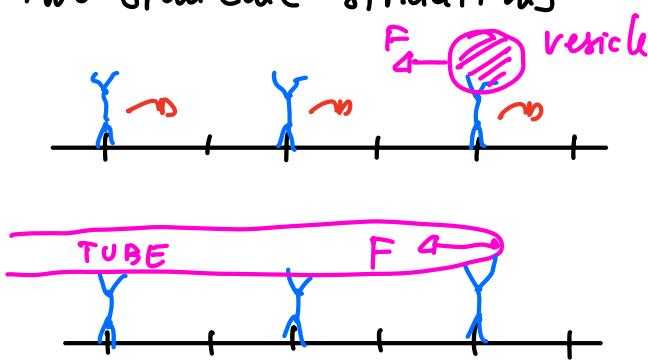
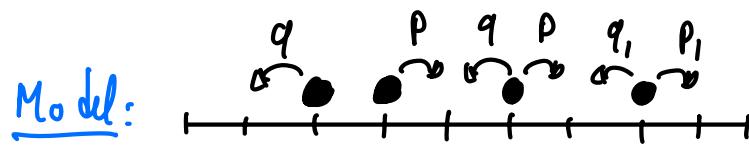
Application to molecular motors: the asymmetric simple exclusion process (ASEP) (2)

ASEP introduced in [Mac Donald, Gibbs, Dickinson, Biopolymers 6, 1-25, 1968] to model ribosomes along DNA. Adapted in

[O. Campas, et al Phys. Rev. Lett. 97, 038101 (2006)]

to model the collective motion of dimers.

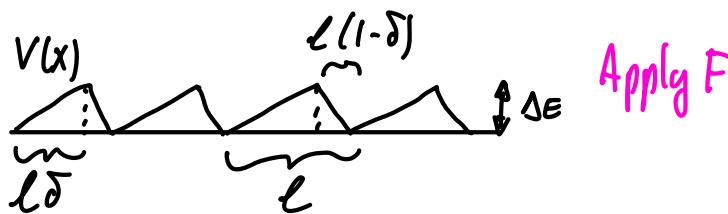
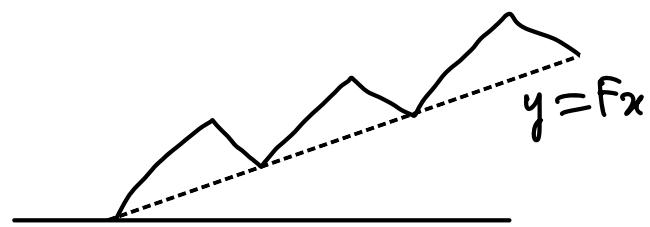
Two standard situations



Particles hop at constant rates onto free sites.

Q: How to model the force applied to the first motor?

Remember the ratchet



$$\text{Energy barrier } \Delta E: \text{forward rate } p = p_0 e^{-\beta \Delta E} \Rightarrow p_1 = p_0 e^{-\beta [\Delta E + F \delta l]} \\ = p e^{-\beta F \delta l}$$

$$\text{backward rate } q = q_0 e^{-\beta \Delta E} \Rightarrow q_1 = q_0 e^{-\beta [\Delta E - F(1-\delta)l]} \\ = q e^{+\beta F(1-\delta)l}$$

For clarity, introduce $\beta F l = f$

4.4.1 Isolated motor and stall force

3

On average, p_1 jumps to the right per unit time }
 q_1 ————— def ————— } mean speed $v_{\text{in}} = p_1 - q_1$

Let's move it: initial position of the motor at time t .

$$\langle i(t) \rangle = \sum_j j P(i(t) = j) \Rightarrow \partial_t \langle i(t) \rangle = \sum_j j \partial_t P(i(t) = j) \quad \text{cumbersome notation} \Rightarrow P(j, t)$$

$$\text{Master equation} \quad \partial_t P(q) = \sum_{q' \neq q} W(q \rightarrow q') P(q') - W(q \rightarrow q) P(q)$$

* The $\varphi \leftrightarrow$ position j

* Identify all q, q' such that $W(q \rightarrow q') \neq 0$ or $W(q' \rightarrow q) \neq 0$
& $P(q') \neq 0$

$$q \leftrightarrow j \implies q' \leftrightarrow j \pm 1$$

$$\begin{aligned}
 \frac{\partial}{\partial t} P(j, t) &= W(j-1 \rightarrow j) P(j-1) + W(j+1 \rightarrow j) P(j+1) \\
 &\quad - [W(j \rightarrow j-1) + W(j \rightarrow j+1)] P(j) \\
 &= p_j P(j-1) + q_j P(j+1) - (p_j + q_j) P(j)
 \end{aligned}$$

$$\begin{aligned}
 \partial_t \langle j \rangle &= \sum_j p_{1,j} P(j-1) + q_{1,j} P(j+1) - (p_{1,j} + q_{1,j}) j P(j) \\
 &\quad \text{with } j=0, 1, \dots, h-1 \\
 &= \sum_h p_{1,h} P(h) + q_{1,h} P(h-1) - (p_{1,h} + q_{1,h}) h P(h) \\
 &= \sum_h (p_{1,h} - q_{1,h}) P(h) = (p_1 - q_1) \sum_h P(h) = p_1 - q_1
 \end{aligned}$$

$$\Rightarrow \langle j(t) \rangle = \langle j(0) \rangle + (p_1 - q_1)t \Rightarrow \boxed{r_{th} = p_1 - q_1}$$

Stall force: Face f such that $v_{in}(F) = 0$

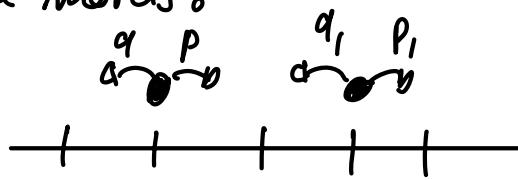
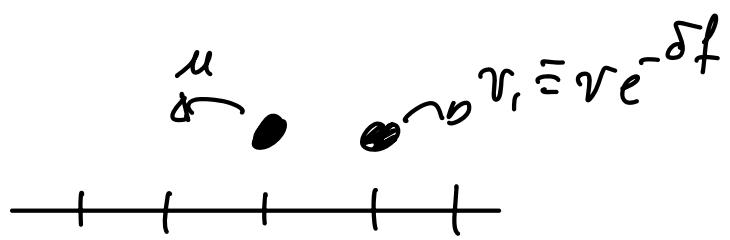
4

$$\Leftrightarrow p_i = q_i \Leftrightarrow p e^{-\delta f} = q e^{(1-\delta)f}$$

$$\Leftrightarrow \frac{f_m}{f_s} = \ln \frac{p}{q}$$

4.4.2) Two motors

For completeness, let us allow for short range interactions between the motors:



if $v_i > p_i$ & $u > q$ \Rightarrow repulsive interactions

if $v_i < p_i$ & $u < q$ \Rightarrow attractive interactions

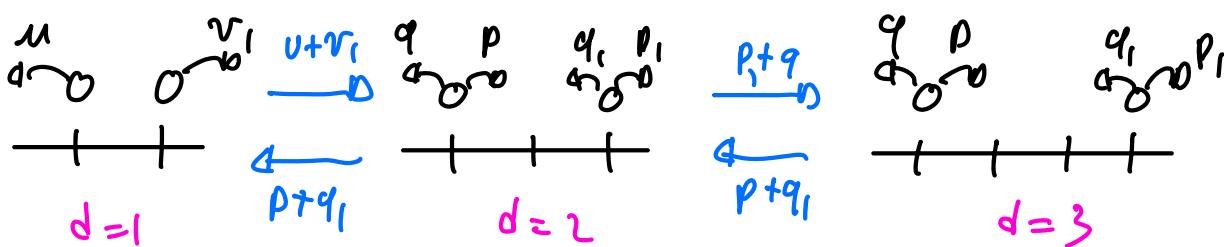
(Otherwise, non reciprocal interactions)

Goal: characterize the motor cooperativity through v_{2m} , the speed in the presence of 2 motors

Intermediate step: characterize the distance between the motors

Average distance between two motors

Let's denote by $f_d(u)$ the probability that the distance between the motors equal d .



$$\partial_t P_d(1) = (p+q_1) P_d(2) - (u+v_1) P_d(1) \quad (1)$$

$$\partial_t P_d(2) = (u+v_1) P_d(1) - (p+q_1) P_d(2) \quad (2)$$

$$- (p_1+q) P_d(2) + (p+q_1) P_d(3) \\ \vdots$$

$$\partial_t P_d(m) = (p+q) P_d(m-1) - (p+q_1) P_d(m) \quad (m)$$

$$- (p_1+q) P_d(m) + (p+q_1) P_d(m+1)$$

Steady state: $\partial_t P_d(i) = 0$; for all i .

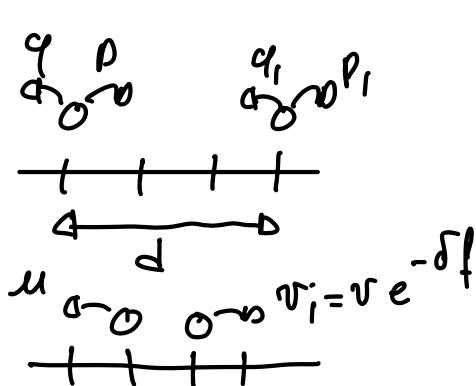
$$(1) \Rightarrow P_d(2) = \frac{u+v_1}{p+q_1} P_d(1) \equiv \gamma_1 P_d(1) \quad \text{when } \gamma_1 = \frac{u+v_1}{p+q_1}$$

$$(1+2) \Rightarrow P_d(3) = \frac{p_1+q}{p+q_1} P_d(2) \equiv \gamma_2 P_d(2) = \gamma_2 \gamma_1 P_d(1) \quad \text{when } \gamma_2 = \frac{p_1+q}{p+q_1}$$

$$(1+2+\dots+m) \Rightarrow P_d(m+1) = \gamma P_d(m) = \dots = \gamma^{m-1} \gamma_1 P_d(1)$$

Normalisation: $\sum_{k=1}^{\infty} P_d(k) = 1 \Leftrightarrow 1 = P_d(1) \left[1 + \gamma_1 \sum_{k=0}^{\infty} \gamma^k \right]$

Average distance between two motors



$$p_1 = p e^{-\delta f} < p$$

$$q_1 = q e^{(1-\delta)f} > q$$

$$\gamma = \frac{p_1+q}{p+q_1} < 1$$

$$\Rightarrow P_d(1) = \frac{1-\gamma}{1-\gamma+\gamma_1} \quad \& \quad P_d(k \geq 2) = \frac{\gamma_1(1-\gamma)}{1-\gamma+\gamma_1} \gamma^{k-2}, \quad \gamma_1 = \frac{u+v_1}{p+q_1}$$

Comment: $P_d(k) \sim C e^{-k \ln \gamma}$ as $k \rightarrow \infty$ $\Rightarrow \langle k \rangle$ finite, scales as $\frac{1}{\ln \gamma}$ as $\gamma \rightarrow 1$

In this case, $\langle h \rangle$ finite \Rightarrow the two motors go at the same average speed

Mean speed of the first motor

$$\begin{aligned}
 v_{2M} &= \langle r \rangle = v_{isolated} \times p(isolated) + v_r p_d(1) \\
 &= (p_1 - q_1) [1 - p_d(1)] + v_r p_d(1) \\
 &= (p_1 - q_1) \frac{r_1}{1 - r + r_1} + v_r \frac{1 - r}{1 - r + r_1} = \frac{(p_1 - q_1)(1 + v_r) + v_r (p + q_1 - p_1 - q)}{p + q_1 - p_1 - q + 1 + v_r} \\
 &= \frac{1 + (p_1 - q_1) + v_r(p - q)}{p + q_1 - p_1 - q + 1 + v_r}
 \end{aligned}$$

Stall force f such that $v_{2M}(f) = 0$

$$u e^{-\delta f} (p - q e^f) + v e^{-\delta f} (p - q) = 0 \Leftrightarrow u q e^f = u p + v p - v q$$

$$f_s^{2M} = \ln \left[\frac{p}{q} + \underbrace{\frac{v}{u} \left(\frac{p}{q} - 1 \right)}_{>0} \right] > \ln \frac{p}{q} = f_s^{1M}$$

Whatever the interactions between the motors, the stall force to stop the 1st motor is always larger when there is a 2nd motor behind it. This is because the presence of the second motor prevents backward fluctuations of the 1st motor.

Speed of the first motor

The second motor increases the stall force, does it increase the speed?

$$v_{2M} - v_{IM} = \frac{\mu(p_1 - q_1) + v_i(p - q)}{p + q_1 - p_1 - q + \mu + v_i} - \frac{(p_1 - q_1)(p + q_1 - p_1 - q + \mu + v_i)}{p - p_1 + q_1 - q + \mu + v_i} \Rightarrow \text{denominator is } > 0$$

$\underbrace{p_1 - q_1}_{\geq 0} \quad \underbrace{p + q_1 - p_1 - q}_{\geq 0} \quad \underbrace{\mu + v_i}_{\geq 0}$

$$\begin{aligned} \text{Sign} (v_{2M} - v_{IM}) &= \text{Sign} [v_i(p - q) - (p_1 - q_1)(p + q_1 - p_1 - q) - v_i(p_1 - q_1)] \\ &= \text{Sign} [(v_i - (p_1 - q_1)) (p - p_1 + q_1 - q)] \\ &= \text{Sign} [v - p + q e^f] \end{aligned}$$

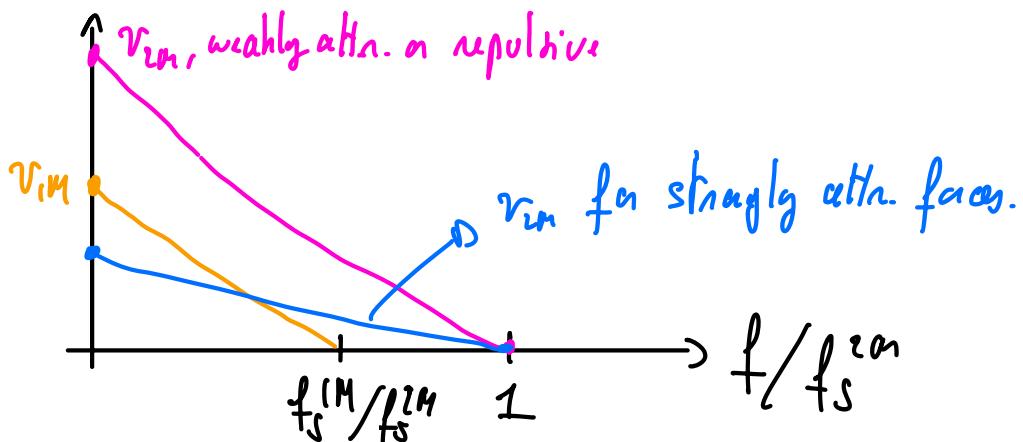
* if $f > f_s^{2M}$, $v_{2M} = v_{IM} = 0$

* if $f_s^{2M} > f > f_s^{IM}$, $v_{2M} > 0 = v_{IM}$

* if $f_s^{IM} > f$, then $v_{2M} > v_{IM} \Leftrightarrow v > p - q e^f \underset{f=0}{\approx} p - q$

If attractive forces are strong, $v < p - q$ & $v_{2M} < v_{IM}$

If are weak, or interactions are repulsive $v_{2M} > v_{IM}$



N body: [O. Campas, et al Phys. Rev. Lett. 97, 038101 (2006)]

5 Detailed balance for Markov Processes

8

Langvin equations: continuous time & continuous space

Markov processes: continuous time & discrete space

(Markov chain: discrete time & discrete space)

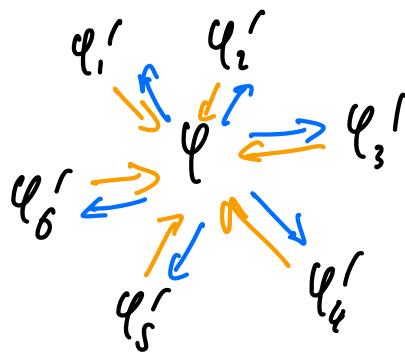
These can be seen as **different level of coarse-graining**, as above, or as dealing with observables of different nature (continuous position x vs discrete number of particles n_i).

The notion of time reversal symmetry & detailed balance extend to the discrete case.

5.1) Detailed balance at the rate level

$$\frac{\partial}{\partial t} P(\varphi) = \sum_{\varphi' \neq \varphi} W(\varphi \rightarrow \varphi') P(\varphi') - \sum_{\varphi' \neq \varphi} W(\varphi' \rightarrow \varphi) P(\varphi)$$

Steady state: $\frac{\partial}{\partial t} P(\varphi) = 0 \Rightarrow \forall \varphi, \sum_{\varphi' \neq \varphi} W(\varphi \rightarrow \varphi') P(\varphi') = \sum_{\varphi' \neq \varphi} W(\varphi' \rightarrow \varphi) P(\varphi)$



probability flux into φ probability flux out of φ

This is called **global balance**, the sum of incoming fluxes is balanced by the sum of outgoing fluxes, leaving $P(\varphi)$ constant.

Detailed Balance (DB) is a stronger constraint: $W(\varphi' \rightarrow \varphi) P(\varphi') = W(\varphi \rightarrow \varphi') P(\varphi)$

It enforces the balance between each pair of states and guarantees that the dynamics is time reversible in the steady state since

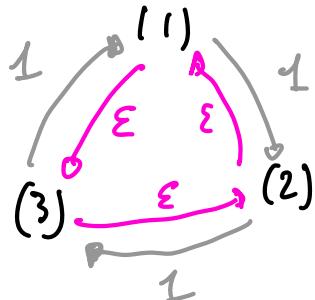
$$P(\varphi, t'; \varphi', t) = P(\varphi, t' | \varphi', t) P(\varphi', t) \underset{t' = t + \Delta t}{\approx} w(\varphi \rightarrow \varphi') \Delta t P(\varphi, t)$$

(g)

$$\text{Then DB} \Rightarrow P(\varphi, t + \Delta t; \varphi', t) = P(\varphi', t + \Delta t; \varphi, t)$$

example:

Invariance by rotation \Rightarrow steady state $P(i) = \frac{1}{3}$



let's check that it satisfies global balance

$$\begin{aligned} \text{flux out of } (i) : & (1+\varepsilon) \times \frac{1}{3} \\ \text{flux into } (i) : & (1+\varepsilon) \times \frac{1}{3} \end{aligned} \quad \left. \begin{array}{l} \text{global} \\ \text{balance} \end{array} \right\}$$

However $P(i) w(i \rightarrow i+1) = \frac{1}{3} \times 1 = \frac{1}{3}$ while $P(i+1) w(i+1 \rightarrow i) = \varepsilon / 3$
 \Rightarrow No detail balance if $\varepsilon \neq 1$.

This fits our intuition: if $\varepsilon < 1$, the CW rotation is more likely than the time reversed, CCW, rotation.

Comment: DB is a joint property of the rates and the steady state distribution.

5.2) At the trajectory level

Escape rate: $\tau(\varphi) = \sum_{\varphi' \neq \varphi} w(\varphi \rightarrow \varphi')$ is the total rate at which the system hops out of configuration φ .

Escape time: τ is the first time at which the system escapes φ , given that it is in φ at time 0. Q: $P(\tau) = ?$

$\tau = N \Delta t$ & work in the limit $N \rightarrow \infty$, $\Delta t \rightarrow 0$, $N \Delta t = \tau$ constant

$\text{Prob}(\varphi \rightarrow \varphi' \text{ during } \Delta t) = w(\varphi \rightarrow \varphi') \Delta t + O(\Delta t^2)$

$\text{Prob}(\text{out of } \varphi \text{ during } \Delta t) = \sum_{\varphi' \neq \varphi} w(\varphi \rightarrow \varphi') \Delta t + O(\Delta t^2) \underset{\Delta t \ll \tau}{\approx} \tau(\varphi) \Delta t$

$\text{Prob}(\text{stay in } \varphi \text{ during } \Delta t) = 1 - \tau(\varphi) \Delta t$

10

$$\text{Prob}(\text{1st escape in } [\tau, \tau + d\tau]) = [1 - n(\tau) d\tau]^N \cdot \underbrace{n(\tau) d\tau}_{\text{does not escape in the } N \text{ first time intervals}} \underbrace{n(\tau) d\tau}_{\text{then it escapes}}$$

$$\approx e^{-N n(\tau) d\tau} n(\tau) d\tau = n(\tau) e^{-\tau n(\tau)} d\tau$$

\Rightarrow the probability density to exit at τ is $P(\tau) = n(\tau) e^{-\tau n(\tau)}$

Comment: ① $P(\tau > t) = \int_t^\infty d\tau P(\tau) = e^{-t n(\tau)} \Rightarrow$ the probability to remain in Q decreases exponentially in time.

② $W(Q \rightarrow Q') d\tau$ is the probability that the system jumps out of Q AND into Q' .

Q: Given that the system hops out of Q , what is the proba that it goes into a specific Q' ?

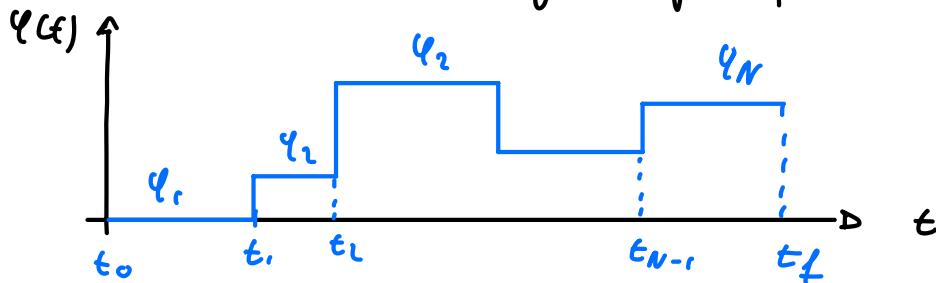
$$P(Q \rightarrow Q' \text{ & jump in the next } d\tau) = W(Q \rightarrow Q') d\tau = P(Q \rightarrow Q' \mid \text{jump}) \times \underbrace{P(\text{jump})}_{n(\tau) d\tau}$$

$$\Rightarrow P(Q \rightarrow Q' \mid \text{jump}) = \frac{W(Q \rightarrow Q')}{\sum_{Q'' \neq Q} W(Q \rightarrow Q'')}$$

This is the basis of the Metropolis sampling algorithm

Probability of a full trajectory

A trajectory is defined as a sequence of configurations φ_i and jump times t_i , at which the system goes from φ_i to φ_{i+1} .



The probability to go from q to q' in $[\epsilon, \epsilon + \delta\epsilon]$ is $W(q \rightarrow q') \delta\epsilon$
 → independent from $q(s \leq \epsilon)$ → Markovian dynamics.
 $\Rightarrow P[\text{trajectory } q(t)] = \prod_i P[\text{transition from } q_i \text{ to } q_{i+1}]$

Let us denote by $P(q)$ the steady state proba to be in q and compare the probability of $q(t)$ & $q''(\epsilon) = q(t'' = t_f - \epsilon)$.

$$P(\{q(t)\}) = P(q_1) \times \underbrace{\pi(q_1)}_{\substack{\text{start at} \\ q_1}} e^{-\pi(q_1)(t_1 - t_0)} \cdot \underbrace{\frac{W(q_1 \rightarrow q_2)}{\pi(q_1)}}_{\substack{\text{go to } q_2 \\ q_1 \rightarrow q_2}} \times \underbrace{\pi(q_2)}_{\substack{\text{stay for } q_2 \rightarrow q_3 \\ q_2 \rightarrow q_3}} e^{-\pi(q_2)(t_2 - t_1)} \cdot \underbrace{\frac{W(q_2 \rightarrow q_3)}{\pi(q_2)}}_{\substack{\text{stay for } q_3 \rightarrow q_4 \\ q_3 \rightarrow q_4}} \dots \times \dots \times \underbrace{\pi(q_{N-1})}_{\substack{\text{stay for } q_{N-1} \rightarrow q_N \\ q_{N-1} \rightarrow q_N}} e^{-\pi(q_{N-1})(t_{N-1} - t_{N-2})} \cdot \underbrace{\frac{W(q_{N-1} \rightarrow q_N)}{\pi(q_{N-1})}}_{\substack{\text{stay in } q_N \\ \text{in } [t_{N-1}, t_f]}} \cdot e^{-\pi(q_N)(t_f - t_{N-1})}$$

The factors $\pi(q_i)$ cancel out.

$$P(\{q(t)\}) = P(q_1) \times \prod_{i=1}^{N-1} W(q_i \rightarrow q_{i+1}) \times \prod_{i=1}^N e^{-\pi(q_i)(t_i - t_{i-1})} \quad \text{with } t_N \equiv t_f$$

Detailed balance $P(q_i) W(q_i \rightarrow q_{i+1}) = W(q_{i+1} \rightarrow q_i) P(q_{i+1})$

$$\underbrace{P(q_1) W(q_1 \rightarrow q_2)}_{W(q_2 \rightarrow q_1)} \underbrace{W(q_2 \rightarrow q_3)}_{W(q_3 \rightarrow 2)} \dots \underbrace{W(q_{N-1} \rightarrow q_N)}_{W(q_N \rightarrow q_{N-1})} P(q_N)$$

$$\underbrace{W(q_2 \rightarrow q_1) P(q_1)}_{W(q_3 \rightarrow 2) P(q_3)} \dots \underbrace{W(q_N \rightarrow q_{N-1}) P(q_{N-1})}_{W(q_N \rightarrow q_{N-1}) P(q_N)}$$

$$\Rightarrow P(q_1) \prod_i W(q_i \rightarrow q_{i+1}) = \underbrace{P(q_1)}_{\substack{\text{prob to} \\ \text{start in} \\ q_1}} \underbrace{\prod_i \text{prob of forward transitions}}_{\substack{\text{prob of} \\ \text{forward transitions}}}$$

$$\prod_i W(q_{i+1} \rightarrow q_i) P(q_N) = \underbrace{\prod_i W(q_{i+1} \rightarrow q_i)}_{\substack{\text{prob of backward} \\ \text{transitions}}} \underbrace{P(q_N)}_{\substack{\text{prob to} \\ \text{start in} \\ q_N}}$$

$$\Rightarrow P(\{\varphi_{(f)}\}) = P(\varphi_N) \times \prod_{i=1}^{N-1} W(\varphi_{i+1} - \varphi_i) \times \prod_{i=1}^N e^{-\lambda(\varphi_i)(t_i - t_{i-1})} \quad (*) \quad (12)$$

Reversed traj

① transitions $\varphi_1^n = \varphi_N, \varphi_2^n = \varphi_{N-1}, \dots, \varphi_N^n = \varphi_1$

$$\Rightarrow \prod_{i=1}^{N-1} W(\varphi_{i+1} - \varphi_i) = \prod_{i=1}^{N-1} W(\varphi_i^n - \varphi_{i+1}^n)$$

② waiting times

The waiting times are symmetric so we expect $\prod_i e^{-\lambda(\varphi_i)(t_i - t_{i-1})}$ to transform symmetrically into $\prod_i e^{-\lambda(\varphi_i^n)(t_i^n - t_{i-1}^n)}$

③ $\lambda(\varphi_i) = \lambda(\varphi_{N-i}^R)$

④ $|t_i - t_{i-1}| = |t_{N-i}^R - t_{N-i-1}^R|$

$$\Rightarrow \prod_i e^{-\lambda(\varphi_i)(t_i - t_{i-1})} = \prod_i e^{-\lambda(\varphi_i^n)(t_i^n - t_{i-1}^n)}$$

Thus (*) holds:

$$P(\{\varphi_{(f)}\}) = P(\varphi_1^n) \cdot \prod_{i=1}^{N-1} W(\varphi_i^n - \varphi_{i+1}^n) \times \prod_{i=1}^N e^{-\lambda(\varphi_i^n)(t_i^n - t_{i-1}^n)} = P(\{\varphi_{(f)}^R\})$$

DB at the rates level thus imposes reversibility at the trajectory level! 13

Comments If we sum over all possible trajectories between q_i & q_n , we find

$$P_{\text{ss}}(q_i, t_0) P(q_n, t_f | q_i, t_0) = P_{\text{ss}}(q_n, t_f) P(q_i, t_f | q_n, 0)$$